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Abstract. The introduction of quasienergy bands for lattices interacting with combined ac
and dc fields allows us to describe the time evolution in close analogy to the field-free case.
We show how such bands emerge for a two-band tight-binding model, and present analytical
and numerical results for its quasienergy band structure. The ratio of disorder strength and
quasienergy band width determines the localization lengths of the quasienergy states. Since the
quasienergy band widths depend on the field parameters, this leads to a possibility of controlling
Anderson localization by adjusting the ac amplitude. It is suggested that signatures of ac-field-
controlled Anderson localization can be found by examining the temperature dependency of
the conductivity of terahertz-driven semiconductor superlattices, for various values of the ac
amplitude.

1. Introduction

Random disorder in periodic potentials causes Anderson localization of the electronic energy
eigenstates [1–4]. In one-dimensional disordered lattices, in particular, all eigenstates are
localized even for arbitrarily weak disorder. The localization lengths are determined by the
ratio of disorder strength and energy band width [5]. Forfinite, weakly disordered lattices
the localization lengths can exceed the size of the whole lattice, so localization is negligible
and the eigenstates can be regarded as effectively extended.

Semiconductor superlattices are important examples of effectively one-dimensional,
finite periodic structures. These artificially grown mesoscopic systems typically consist
of about 100 lattice periods, often even less, and they inevitably contain a certain amount
of disorder. Usually one is interested in high-quality superlattice samples for studying,
e.g., Bloch oscillations, but it is readily possible to fabricate also intentionally disordered
superlattices [6], and to investigate the effects of layer thickness fluctuations on electronic
transport properties.

For a systematic experimental study of localization effects in superlattices, it would be
desirable to manipulate the localization lengths within an individual sample. One could then
explore the crossover effects that occur when the localization lengths are comparable to the
sample size. However, since both the amount of disorder and the energy (mini-)band widths
are sample-specific properties, achieving such a tunability of localization lengths appears
impossible.

The situation is quite different if the superlattice is exposed to a spatially homogeneous
ac electric field. Then the total Hamiltonian is periodically time dependent, and Floquet
states and quasienergy bands take over the role that Bloch waves and energy bands had
played in the static case [7–9]. The widths of the quasienergy bands depend strongly on
the ac amplitude, and can even approach zero under certain conditions. In the presence of
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ac fields, it is the ratio of disorder strength and the amplitude-dependentquasienergy band
width that determines the degree of localization [10–12]. Hence, in principle it is possible
to change the localization lengths by suitably adjusting the amplitude of the ac field.

In this paper we extend the previous theoretical studies on ac-field-controlled Anderson
localization [10–12] to include interband effects. To this end, we explore the dynamics
of a single electron in a two-band tight-binding model [9, 13] driven simultaneously by a
static and a resonant, oscillating field. Needless to say, this simple model cannot give a
one-to-one description of all processes in real superlattices. For example, an electron in
a semiconductor never experiences only the external field; it also experiences a field from
induced polarization [14]. However, it has been shown recently by Meieret al [15–17] that
consequences of the band collapse found in the ideal single-band tight-binding model [7],
such as dynamic localization [18–20], survive even in the presence of Coulomb interactions,
and should be experimentally observable. We may therefore assume that the idealized tight-
binding model still captures a significant part of the physics of real superlattice samples.
In any case, this model provides a paradigmatically clear example for the influence of
interband effects on Anderson localization in ac fields. Since successful experiments with
semiconductor superlattices in strong terahertz fields have already been carried out [21–24],
it might be of interest to search for signatures of ac-field-controlled Anderson localization
in these systems.

Our paper is organized as follows: section 2 contains a brief description of the model,
as well as analytical and numerical results for its quasienergy band structure in the absence
of disorder. Since the numerical computation of quasienergy bands is a straightforward
matter, particular emphasis is put on a transparent explanation of the physics that leads to
the emergence of these bands. Section 3 then discusses the relation between quasienergy
band width and localization in the randomly disordered model, and typical effects caused
by interband transitions. Some conclusions are drawn in the final part, section 4.

2. Quasienergy bands for the ideal two-band model

We consider the standard two-band tight-binding Hamiltonian for a lattice electron driven
by an electric field [9, 13]:

H(t) = H0,1 +HF,1(t)+H0,2 +HF,2(t)+HIB(t). (1)

For eitherj = 1 or j = 2 the HamiltonianH0,j describes the dynamics within a single
band of width1j ,

H0,j = (−1)j
D

2

∑
`

|`, j〉〈`, j | + (−1)j
1j

4

∑
`

(|`+ 1, j〉〈`, j | + |`, j〉〈`+ 1, j |) (2)

andHF,j (t) models the interaction with an external electric fieldF(t):

HF,j (t) = eF (t)d
∑
`

|`, j〉`〈`, j |. (3)

The centres of the two unperturbed bands are separated by the energy distanceD. The
interaction between them is given byHIB(t):

HIB(t) = eF (t)X
∑
`

(|`, 1〉〈`, 2| + |`, 2〉〈`, 1|) . (4)

We have denoted the Wannier state at the`th site in thej th band (j = 1, 2) by |`, j〉; e
is the electronic charge,d the lattice constant, andX the interband matrix element. The
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electric field consists of a static part of strengthF0 and an oscillating part with amplitude
F1 and frequencyω:

F(t) = F0 + F1 cos(ωt). (5)

Throughout this paper, we adopt a system of units with ¯h = 1.
If the ac amplitudeF1 vanishes, then the energy spectrum of the dc-driven two-

band model consists of two interspaced Wannier–Stark ladders, i.e., of two sequences of
energy eigenvalues with constant spacing1E = eF0d between adjacent members of each
sequence [13].

On the other hand, if the amplitudeF1 of the ac field is so high that standard low-
order perturbation theory ceases to be applicable, it is no longer practical to analyse the
dynamics in terms of energy eigenstates and energy eigenvalues. Rather, one can resort to
Floquet theory: given a quantum system governed by a HamiltonianH(t) that is periodic
in time, with periodT = 2π/ω, there should be a complete set{ψr(t)} of solutions to the
Schr̈odinger equation i∂tψ(t) = H(t)ψ(t) of the particular form [25, 26]

ψr(t) = ur(t) exp(−iεr t) (6)

where the functionsur(t) inherit theT -periodicity of the Hamiltonian:

ur(t) = ur(t + T ). (7)

A wave functionψr(t) is called Floquet state, with quasienergyεr . Inserting such a Floquet
state into the Schrödinger equation, one obtains

[H(t)− i ∂t ] ur(t) = εrur(t). (8)

Hence, the periodic functionsur(t) and the quasienergiesεr can be computed by solving
the eigenvalue problem associated with the operator [H(t) − i ∂t ] in an extended Hilbert
space consisting ofT -periodic functions [27]. The scalar product in that space

〈〈 · | · 〉〉 := 1

T

∫ T

0
dt 〈 · | · 〉 (9)

is the usual scalar product combined with time averaging. The conceptual advantage of the
Floquet states lies in the fact that an arbitrary solutionψ(t) to the Schr̈odinger equation can
be expanded as

ψ(t) =
∑
r

arur(t) exp(−iεr t) (10)

with time-independent coefficientsar .
Exactly as a quasimomentum in a periodic lattice is defined up to an integer multiple

of the reciprocal-lattice vector, a quasienergy is defined up to an integer multiple ofω: if
ur(t) is a T -periodic solution to the eigenvalue equation (8) with quasienergyεr , and if
m is an arbitrary, positive or negative integer, then alsour(t) exp(imωt) is a T -periodic
eigensolution, with quasienergyεr + mω. All of these replicas are physically equivalent,
because

ur(t) exp(imωt) exp(−i[εr +mω]t) = ur(t) exp(−iεr t). (11)

Nevertheless,all solutions to (8) are required for the completeness relation in the extended
Hilbert space.

If one applies this Floquet theory to the lattice Hamiltonian (1), one accounts for the
T -periodicity induced by the ac field. It must be recognized, however, that the dc field also
induces time-periodic wave-packet motion, that is, Bloch oscillations [28]. If the Bloch
frequencyωBloch = eF0d is different from the ac frequencyω, then the Floquet states,
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which mark outone type of periodicity, might not provide the optimal basis. The problem
becomes obvious on changing the gauge: the Hamiltonian (1) is unitarily equivalent to

H̃ (t) =
∑
j=1,2

∑
`

(−1)j
D

2
|`, j〉〈`, j |

+
∑
j=1,2

∑
`

(−1)j
1j

4

(
e−ieA(t)d |`+ 1, j〉〈`, j | + |`, j〉〈`+ 1, j |e+ieA(t)d

)
+eF (t)X

∑
`

(|`, 1〉〈`, 2| + |`, 2〉〈`, 1|) (12)

where

A(t) = −F0t − F1

ω
sin(ωt) (13)

is the gauge potential. Unless the Bloch frequencyωBloch = eF0d and the ac frequency
ω are rationally related, the phase factors exp(±ieA(t)d) are quasiperiodic functions of
time. In order to account for this type of time dependence, one should apply two-mode
Floquet theory toH̃ (t). There is, however, an important case whereT -periodicity is not
affected by the gauge transformation: ifωBloch is a multiple ofω, then both (1) and (12)
areT -periodic, and the Floquet states can incorporate the effects of both the ac and the dc
field in an optimal way.

With this caveat in mind, we now turn to the eigenvalue problem (8) for the two-band
tight-binding Hamiltonian (1). We proceed in several steps. First we rewriteH(t) as

H(t) = H0 +
∑
`

H
(`)
IB (t)+

∑
`

H
(`)
F (t) (14)

where

H0 = H0,1 +H0,2 (15)

is the time-independent part. Field-induced transitions between the two Wannier states at
the `th site are described by

H
(`)
IB (t) = (|`, 2〉〈`, 1| + |`, 1〉〈`, 2|) eX(F0 + F1 cos(ωt)) (16)

and

H
(`)
F (t) = (|`, 1〉〈`, 1| + |`, 2〉〈`, 2|) e`d(F0 + F1 cos(ωt)) (17)

is the diagonal part of the interaction with the electric field. In order to compute the
quasienergy bands for the model (1), i.e., the spectrum of [H(t)− i ∂t ], we will first derive
the exact Floquet states for the operator [H(t)−H0 − i ∂t ], and then treatH0 perturbatively.

Solutions to the Schrödinger equations[
H
(`)
IB (t)+H

(`)
F (t)− i ∂t

]
ϕ(`)(t) = 0 (18)

are given by

ϕ
(`)
± (t) = 1√

2
(|`, 1〉 ± |`, 2〉) exp

(
−i(±eX + e`d)

(
F0t + F1

sin(ωt)

ω

))
. (19)

Evidently, these are Floquet states with quasienergies

ε
(`)
± = ±eF0X + `eF0d modω. (20)
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The individual on-site Floquet statesϕ(`)± (t) are coupled by the hopping terms inH0. They
can hybridize and form quasienergy bands of finite widthonly if they are quasienergetically
degenerate with their nearest neighbours—i.e., if there exists an integern such that

eF0d = nω. (21)

This condition for quasienergetic alignment simply means that the energy ofn photons
matches the energy difference between adjacent rungs of the Wannier–Stark ladders. As
noted before, this is also the condition for the Floquet states to constitute an optimal basis.
In the following we will therefore assume that the ac frequency is tuned such that (21) is
satisfied.

We then form linear superpositions

ψ±(k; t) =
∑
`

exp(−ik`d)ϕ(`)± (t) ≡ u±(k; t) exp(−iε±t). (22)

By construction, theT -periodic functionsu±(k; t):

u±(k; t) = 1√
2

∑
`

(|`, 1〉 ± |`, 2〉) exp

(
−ik`d − i`nωt − i(`d ±X)

eF1

ω
sin(ωt)

)
(23)

are extended quasienergy eigenfunctions of the operator [H(t)−H0−i ∂t ], provided that (21)
holds. Their quasienergy eigenvalues,ε± = ±eF0X modω, are degenerate with respect to
the wave vectork.

In general, this degeneracy will be removed as a consequence of the hopping between
nearest neighbours as described byH0. If both the hopping strengths and the unperturbed
energy band separation are small, i.e., if11/ω � 1, 12/ω � 1, andD/ω � 1, we can
treat the effect ofH0 on the spectrum by low-order perturbation theory in the extended
Hilbert space [27]. SinceH0 has nonvanishing matrix elements only between Floquet
eigenfunctions (23) that are characterized by the same wave vector,k is a good quantum
number. We have to distinguish two cases: if there is no integerm such that

2eF0X = mω (24)

thenε+ andε− do not coincide (modω), and we can resort to nondegenerate perturbation
theory. Since

〈u±(k′; t)|H0|u±(k; t)〉 = 12 −11

4
cos

(
kd + nωt + eF1d

ω
sin(ωt)

)
δk,k′ (25)

the required matrix elements in the extended Hilbert space are

〈〈u±(k′; t)|H0|u±(k; t)〉〉 = 12 −11

4
J−n

(
eF1d

ω

)
cos(kd) δk,k′ . (26)

Hence, we obtain the quasienergy–quasimomentum dispersion relations

ε±(k) = ±eF0X + (−1)n
12 −11

4
Jn

(
eF1d

ω

)
cos(kd) modω. (27)

Within this first-order approximation, the two quasienergy bands are simple cosine bands
with identical widths, and they both collapse when the dimensionless ac amplitudeeF1d/ω

equals a zerojn,s of the ordinary Bessel functionJn, exactly as in the case of a single
band [7, 8, 12].

FIG 1 a+b+c —add with macros
The approximate spectrum (27) does not contain the original energy band separationD.

If D is not small compared to the ac frequency, but still1j/ω � 1 for j = 1, 2, one can
consider first the limiting case where11/ω = 12/ω = 0. Then the Hamiltonian (1) still
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(a)

(b)

(c)

Figure 1. See facing page.
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Figure 1. (See facing page.) Quasienergy bands for the two-band model (1) with 41 sites,
versus the scaled ac amplitudeeF1d/ω. The case considered here is a one-photon resonance,
eF0d = 1ω. (a) Vanishing interband interaction,X/d = 0. The energy band widths are
11/ω = 1.0, 12/ω = 1.2; the energy band separation isD/ω = 5.5. Both quasienergy bands
collapse at the zeros ofJ1. (b)X/d = −16/(9π2), but1j/ω = 0 (j = 1, 2). (c) Quasienenergy
bands with1j/ω as in (a), andX/d as in (b). Note that the band collapses are hardly affected
by the interband interaction.

reduces to a system of uncoupled two-level systemsH
(`)
tls (t) that are labelled by the site

index `:

H
(`)
tls (t) = D

2
σz + eF (t)`d 1 + eF (t)Xσx (28)

where σx and σz are the usual Pauli matrices. The quasienergy spectra of all of these
systems coincide, provided that the resonance condition (21) is satisfied. If then11/ω 6= 0
and12/ω 6= 0, and so different sites communicate with each other, this`-degeneracy is
again removed, and quasienergy bands emerge. The centres of these bands tend to follow
the quasienergies of the associated two-level systems (28), and their widths tend to oscillate
proportionally toJn(eF1d/ω), as in the case whereD/ω � 1.

Figure 1 depicts such a scenario for a finite lattice withN = 41 sites; the wave functions
are assumed to vanish at the chain ends. Plot (a) shows the two quasienergy bands without
interaction(X/d = 0), versus the scaled ac amplitudeeF1d/ω. The parameters chosen are
n = 1 (that is, we have a one-photon resonance,eF0d = 1ω), 11/ω = 1.0, 12/ω = 1.2,
andD/ω = 5.5. Plot (b) shows the quasienergies for the two-level systems (28). The value
of the interband matrix element isX/d = −16/(9π2) [9], so the second resonance (24) is
not met. Plot (c) shows the quasienergy bands for the full system, with1j/ω as in (a) and
X/d as in (b). The band collapses are hardly affected by the interband interaction; they
occur at the same ac amplitudes as in the case whereX/d = 0.

The quasienergy spectrum becomes more complicated if, besides the basic condition (21)
required for the emergence of quasienergy bands, the second resonance condition (24) is
also satisfied. Then the quasienergiesε

(`)
tls,± of the two-level systems (28) show the strongest

dependency on the ac amplitude. A standard calculation [29] readily yields a strong-field
approximation:

ε
(`)
tls,± = mω

2
± (−1)m

D

2
Jm

(
2eF1X

ω

)
modω (29)

which shows that the already familiar Bessel functionJn(eF1d/ω) resulting from the
coupling of adjacent sites now has to compete with the Bessel functionJm(2eF1X/ω)

originating from the coupling of the two Wannier–Stark ladders.
The calculation of the approximate quasienergy band structure for the case where

1j/ω � 1 (j = 1, 2), D/ω � 1, requires degenerate perturbation theory, since, by
virtue of of (24), the quasienergy eigenfunctionsu+(k; t) andu−(k; t)eimωt belong to the
same quasienergy. Hence, besides the matrix elements (26) we also need

〈〈u+(k; t)|H0|u−(k; t)eimωt 〉〉
= − (−1)m

D

2
Jm

(
2eF1X

ω

)
−11 +12

8

[
eikdJ−n−m

(
(2X + d)eF1

ω

)
+ e−ikdJn−m

(
(2X − d)eF1

ω

)]
.

(30)
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(a)

(b)

Figure 2. Quasienergy bands for a case of double resonance. (a) Numerically computed quasi-
energy bands for a finite lattice with 41 sites, forn = 5 andm = −2 (X/d = −0.2). The other
parameters areD/ω = 1.2, 11/ω = 0.4, and12/ω = 0.8. (b) Evaluation of the approximate
formula (33) for these parameters.

Defining the dimensionless parameters

α = eF1d

ω
(31)

and

β = 2eF1X

ω
(32)
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we then obtain the approximate quasienergy bands for the case where both resonance
conditions (21) and (24) are satisfied:

ε±(k) = mω

2
+ (−1)n

12 −11

4
Jn(α) cos(kd)±

[
D2

4
J 2
m(β) +

(
11 +12

8

)2

× (
J 2
m+n(β + α)+ J 2

m−n(β − α)+ 2Jm+n(β + α)Jm−n(β − α) cos(2kd)
)

+(−1)nD
11 +12

8

× Jm(β) cos(kd) (Jm+n(β + α)+ Jm−n(β − α))

]1/2

modω. (33)

These are no longer simple cosine bands. Depending on the respective values of the integers
n andm, up to four different Bessel functions appear. The widths of the quasienergy bands
still depend strongly on the ac amplitude, but there are no perfect band collapses.

Figure 2(a) depicts the numerically computed quasienergy bands for a finite lattice with
41 sites, for11/ω = 0.4, 12/ω = 0.8, andD/ω = 1.2. We have chosenn = 5 and
X/d = −0.2, which givesm = −2. Figure 2(b) shows the evaluation of (33) for these
parameters. SinceD/ω is not really small, the approximation fails at low ac amplitudes.
For high amplitudes, however, the agreement is quite good, thus indicating the correctness
of our line of reasoning.

It should be pointed out that for nonvanishing dc fields both resonance conditions (21)
and (24) can be satisfied simultaneously only if 2X/d = m/n is a ratio of two integers. Of
course, any given ratio 2X/d could be approximated arbitrarily well by rational numbers,
but the resonances will be physically meaningful only if bothn andm are small. However,
if there is no dc field at all, then both conditions are satisfied automatically, withn = m = 0.
In that case the analytical formula (33) shows that the quasienergy bands no longer collapse
perfectly whenα equals a zero ofJ0, as has recently been observed in numerical studies
by Rotvig et al [9]. Whether or not an approximate collapse occurs depends on the values
of bothα andβ.

3. Amplitude-controlled Anderson localization

We now introduce site-diagonal random disorder into the tight-binding model by adding to
H(t) the Hamiltonian

Hrandom =
∑
`

ν` (|`, 1〉〈`, 1| + |`, 2〉〈`, 2|) . (34)

We assume that the random energiesν` are distributed uniformly in the interval
[−νmax,+νmax ], and so their probability distributionρ(ν) is given by

ρ(ν) =
{

1/(2νmax) for |ν| 6 νmax
0 otherwise.

(35)

Figure 3(a) shows an example for the effect of disorder on the quasienergy spectrum. The
parameters chosen are the same as in figure 1(c); the disorder strength isνmax/ω = 0.05.

The random disorder leads to localization of the quasienergy band states. To investigate
this localization we expand the numerically computed quasienergy statesur(t) in the basis
of the Wannier states:

ur(t) =
N∑
`=1

(
c
(r)

`,1(t)|`, 1〉 + c
(r)

`,2(t)|`, 2〉
)

(36)



1202 K Drese and M Holthaus

(a)

(b)

Figure 3. (a) The quasienergy spectrum for a randomly disordered two-band model with
the same parameters as in figure 1(c). The disorder strength isνmax/ω = 0.05. (b) The
corresponding averaged inverse participation ratioP ; see (38). The vertical lines indicate
dimensionless amplitudeseF1d/ω that correspond to zeros of the Bessel functionJ1, where
the quasienergy bands of the ideal lattice collapse.

and compute the inverse participation ratios:

P (r)(t) =
N∑
`=1

(
|c(r)`,1(t)|2 + |c(r)`,2(t)|2

)2
. (37)

These quantities measure the spatial extent of the quasienergy states.P (r)(t) approaches
unity whenur(t) is localized entirely at a single site, and vanishes asN−1 whenur(t) is
uniformly extended. The time dependence ofP (r)(t) , r = 1, . . . ,2N , becomes weak when
the ac frequencyω is larger than the energy band widths11 and12 [12, 30]. It then
suffices to represent the functionsP (r)(t) by their values at some arbitrary momentt0. For
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numerical convenience we chooset0 = 3T/4, where the ac field vanishes. However, this
particular choice is without major significance for the results that follow.

Figure 4. The inverse participation ratio for the model with the same parameters as in figure 2(a),
and additional disorder of strengthνmax/ω = 0.01. The vertical lines indicate zeros ofJ5.

A measure for the degree of disorder-induced localization is now the averaged inverse
participation ratio

P := 1

2N

2N∑
r=1

P (r)(3T/4). (38)

Figure 3(b) showsP as function of the scaled ac amplitudeeF1d/ω for the situation
considered in figure 3(a). Localization is most strongly pronounced at the zeros ofJ1,
where the widths of the quasienergy bands are minimal, and comparatively weak in between.
This result is not trivial. The HamiltonianH(t) for the ideal lattice describes Bloch
oscillations, Zener tunnelling, and Rabi oscillations between the unperturbed energy bands.
The quasienergy band states that reflect the dynamics in resonant ac fields incorporate these
phenomena. Nevertheless, in the presence of disorder they behave just like energy band
states in the static case: the degree of localization is determined by the ratio of disorder
strength and band width. Since now the band widths depend on the ac amplitude, changing
the amplitude means changing the localization lengths.

The situation studied in figure 3 is still comparatively simple, since the second resonance
condition (24) is not met, and the behaviour of the two bands is not too different from
that in the noninteracting case(X/d = 0). If (24) is satisfied, the dynamics is richer
and, as a consequence, the dependency ofP on the ac amplitude more complicated. We
display in figure 4 the averaged inverse participation ratio for such a situation. The system
parameters are as in figure 2(a), and there is additional disorder of strengthνmax/ω = 0.01
(so νmax/11 = 0.025, νmax/12 = 0.0125). Since we now have a five-photon resonance
between the rungs of the Wannier–Stark ladders, vertical lines are drawn to indicate the zeros
of J5. There is still pronounced localization atsomeof the zeros, but the fluctuations ofP
between the spikes are apparently unrelated to the other zeros. A glance at figure 2(a) shows
the reason for this: the two quasienergy bands exhibit avoided crossings when 2eF1X/ω is
approximately equal to a zero ofJ2. Then the single-band dynamics is strongly modified,
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(a) (b)

(c)

Figure 5. Band-resolved inverse participation
ratios (39) for the same parameters as in figure 4,
compared to the quasienergy bands of the ideal lattice
(νmax/ω = 0). The dashed curves belong the upper
bands, the full curves to the lower. Note that
the points of collapse are slightly shifted from the
zeros ofJ5 (vertical lines), and that additional band
narrowings occur.

and the band widths do not follow the simpleJ5-pattern. The actual connection between
quasienergy band width and degree of localization, however, remains valid.
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To further substantiate this statement, we also compute the band-resolved participation
ratios

Pbr := 1

N

∑
one band

P (r)(3T/4) (39)

where the summation extends only over indicesr pertaining to one of the two quasienergy
bands. The upper parts of figures 5(a), 5(b), and 5(c) show results of such calculations; the
lower parts depict the corresponding quasienergy bands for theideal model (νmax/ω = 0).
The parameters are as in figure 4. In all three cases, the dashed curve belongs to the upper
band and the full curve to the lower one; vertical lines are drawn at zeros ofJ5. The
behaviour ofPbr reflects even fine details visible in the quasienergy bands, such as slight
shifts of the collapse points away from the zeros ofJ5, and the appearance of additional
band narrowings in only one of the bands.

4. Conclusions

The original energy bands of the two-band model are coupled by Rabi oscillations and
Zener tunnelling. An arbitrary wave packet, initially prepared in one of the bands, will soon
acquire components in the other. The introduction of quasienergy states corresponds to a
transformation from these interacting bands tononinteractingquasienergy bands: a wave
packet can be characterized by its expansion coefficients with respect to the quasienergy
states, and these coefficients remain constant in time; see (10). Since the quasienergy states
already incorporate both the ac and the dc field, they serve as a basis which allows us to
describe the time evolution in complete analogy to the field-free case.

It is remarkable that this analogy extends even further. When there is random lattice
disorder, the quasienergy band states localize in space. The dimensionless parameter that
determines the degree of localization is the ratio of disorder strength and band width, exactly
as in the well known case of Anderson localization of energy eigenstates in random lattices
without external fields. But now there is an important new feature: the quasienergy bands
reflect both the spatial lattice periodicity and the temporal periodicity induced by the driving
fields. Varying the amplitude of the ac field means changing the properties of the spatio-
temporal lattice, and, hence, changing its quasienergy band structure. For disordered lattices,
varying the band widths means controlling the degree of localization. In principle, therefore,
there exists a possibility of controlling Anderson localization with spatially homogeneous
ac fields.

Even though there is still a long way to go from our idealized model to an actual
superlattice sample, it is tempting to speculate about possible implications of the results
outlined in this paper for current experiments that probe the dynamics of semiconductor
superlattices under the influence of strong terahertz radiation [21–24]. For parameters where
the quasienergy bands are sufficiently wide, the inevitable disorder in these mesoscopic
systems might play only a minor role, so electronic transport should proceed via the
effectively extended states. In that case, phonon scattering wouldimpede the flow of
electrons. On the other hand, there exist only localized states at field parameters where the
quasienergy bands (almost) collapse, so phonon scattering would now be a mechanism that
helps the electrons to hop from one site to another. That could result in a conductivity
that decreaseswith temperature when the quasienergy bands are wide, butincreases
with temperature when they are collapsed. The observation of a strongly amplitude-
dependent conductivity–temperature relation would, therefore, be an indication for Anderson
localization of quasienergy states. It might also be attractive to perform experiments with
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intentionally disordered superlattices. In any case, the further exploration of the concept
of ac-field-controlled Anderson localization presents a new challenge to both theorists and
experimentalists.
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